EXACT ASYMPTOTIC BEHAVIOUR OF THE CODIMENSIONS OF SOME P.I. ALGEBRAS

BY

VESSELIN DRENSKY*

Institute of Mathematics, Bulgarian Academy of Sciences Akad. G.Bonchev Str., Block 8, 1113 Sofia, Bulgaria e-mail: drensky@bgearn.acad.bg

AND

AMITAI REGEV**

Department of Mathematics, The Pennsylvania State University University Park, PA 16802, USA

and

Department of Theoretical Mathematics The Weizmann Institute of Science, Rehovot 76100, Israel e-mail: regev@wisdom, weizmann.ac.il

In memory of S. A. Amitsur, our teacher and friend

ABSTRACT

Let $c_n(A)$ denote the codimensions of a P.I. algebra A, and assume $c_n(A)$ has a polynomial growth: $c_n(A)_{n \to \infty} q^{n^k}$. Then, necessarily, $q \in \mathbb{Q}$ [D3]. If $1 \in A$, we show that

$$
\frac{1}{k!} \le q \le \frac{1}{2!} - \frac{1}{3!} + \cdots + \frac{(-1)^k}{k!} \approx \frac{1}{e}.
$$

where $e = 2.71...$ In the non-unitary case, for any $0 < q \in \mathbb{Q}$, we construct A, with a suitable k, such that $c_n(A)_n \cong_q n^k$.

^{*} Partially supported by Grant MM404/94 of Ministry of Education and Science, Bulgaria and by a Bulgarian-American Grant of NSF.

^{**} Partially supported by NSF grant DMS-9101488. Received March 15, 1995 and in revised form May 15, 1995

Introduction

In this paper we consider (non-unitary) P.I. algebras A over a field F of any characteristic. It is known that the codimensions $c_n(A)$ are exponentially bounded [Re], i.e. there exists a constant α such that $c_n(A) \leq \alpha^n$, $n = 1, 2, \ldots$ Our purpose is to obtain more detailed information about the growth of $c_n(A)$. Up till now, all the known examples in characteristic 0 show that either $c_n(A)$ is of polynomial growth or there exist constants a_1, a_2, ℓ_1, ℓ_2 and α such that for all n

$$
a_2 n^{\ell_2} \alpha^n \leq c_n(A) \leq a_1 n^{\ell_1} \alpha^n.
$$

For a large class of P.I. algebras A, it is now known that $c_n(A)$ asymptotically behaves as

$$
(0.1) \t\t\t c_n(A) \simeq b \cdot n^g \cdot \alpha^n
$$

for some b, g and α . In all these cases,

$$
\alpha \in \mathbb{N},
$$

$$
(0.1.2) \t\t\t g \in \frac{1}{2}\mathbb{Z},
$$

and

$$
(0.1.3) \t\t b = r \left(\frac{1}{\sqrt{\pi}}\right)^s
$$

for some $r \in \mathbb{Q}$ and $0 \le s \in \mathbb{Z}$ [BR]. It is reasonble to conjecture (0.1) and (0.1.1) in general.

The inverse problem here is that of constructing A with $c_n \simeq b \cdot n^g \cdot \alpha^n$ for given b, g and α . When $\alpha = 1$, this is the case of a polynomial growth of $c_n(A)$. A description of such algebras A (in characteristic 0) was given by Kemer [K] in the language of the cocharacter sequence of A. Further, it is known that

$$
c_n(A) = qn^k + \mathcal{O}(n^{k-1}) \simeq qn^k
$$

for a rational number q [D3].

The main goal of our paper is to determine the value of q in the case of polynomial growth of $c_n(A)$. It is very surprising that the answer depends on whether or not the algebra is unitary. If $c_n(A) \simeq qn^k$ and $1 \in A$, we show that

$$
\frac{1}{k!} \le q \le \frac{1}{2!} - \frac{1}{3!} + \cdots + \frac{(-1)^k}{k!} \approx \frac{1}{e},
$$

where $e = 2.71...$ On the other hand, for non-unitary algebras and for any positive rational number q we give explicit constructions of algebras such that $c_n(A)$ is asymptotically equal to qn^k for a suitable k.

1. Unitary algebras

Throughout this paper F is a field of any characteristic and all algebras are F-algebras. We denote by $F(X)$ the free non-unitary associative algebra freely generated by a countable set $X = \{x_1, x_2, ...\}$ and by $F + F\langle X \rangle$ the free unitary algebra with the same set of free generators. As usual $V_n \subseteq F(X)$ is the vector space of the multilinear polynomials in x_1, \ldots, x_n . For a P.I. algebra A we denote by $Id(A)$ the T-ideal of the polynomial identities for A. The sequence $c_n(A) = \dim(V_n/V_n \cap \text{Id}(A)), n = 1, 2, \ldots$, is called the codimension sequence of A. Assuming that $c_0(A) = 1$, it is convenient to introduce the generating function

$$
c(A,t) = \sum_{n\geq 0} c_n(A)t^n
$$

as well as the exponential generating function

$$
\tilde{c}(A,t) = \sum_{n \geq 0} c_n(A) \frac{t^n}{n!}.
$$

Recall [Sp] that the polynomial $f(x_1,...,x_n) \in V_n$ is called "proper" if it is a linear combination of products of (long) commutators

$$
[x_{\sigma(1)},\ldots]\ldots[\ldots,x_{\sigma(n)}], \quad \sigma \in S_n.
$$

We denote by Γ_n the vector space of the proper polynomials of degree n. For a P.I. algebra A we introduce the *n*-th proper codimension

$$
\gamma_n(A) = \dim \Gamma_n/(\Gamma_n \cap \text{Id}(A)), \quad n = 0, 1, 2, \ldots,
$$

and the related generating functions

$$
\gamma(A,t) = \sum_{n\geq 0} \gamma_n(A)t^n, \quad \tilde{\gamma}(A,t) = \sum_{n\geq 0} \gamma_n(A)\frac{t^n}{n!}.
$$

Drensky [D1, D2] has discovered the following relations between the ordinary and the proper codimensions.

PROPOSITION 1.1 ([D1, Corollary 2.5], [D2, p. 322]): *For any unitary* algebra A,

$$
c_n(A) = \sum_{k=0}^n {n \choose k} \gamma_k(A),
$$

$$
c(A, t) = \frac{1}{t-1} \gamma \left(A, \frac{t}{1-t}\right),
$$

$$
\tilde{c}(A, t) = e^t \tilde{\gamma}(A, t).
$$

In particular, if there exists k such that $\gamma_k(A) \neq 0$ and $\gamma_\ell(A) = 0$ for $\ell > k$, then

$$
c_n(A) = \sum_{\ell=0}^k \binom{n}{\ell} \gamma_\ell(A)
$$

and $c_n(A)$ is a polynomial of degree k in n.

Note that the proofs in [D1, D2] are in characteristic 0. However, they hold without any changes in any characteristic because the result of Specht [Sp] is based on the fact that the free associative algebra is the universal enveloping algebra of the free Lie algebra and this is true over any field.

COROLLARY 1.2 ([Sp]): *For every* $n = 0, 1, 2, ...$

dim
$$
\Gamma_n = n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \cdots + \frac{(-1)^n}{n!} \right)
$$
.

Proof: Let

$$
\tilde{c}(t) = \sum_{n\geq 0} \dim V_n \frac{t^n}{n!} = \sum_{n\geq 0} t^n.
$$

$$
\tilde{\gamma}(t) = \sum_{k\geq 0} \dim \Gamma_k \frac{t^k}{k!} = \sum_{k\geq 0} \gamma_k \frac{t^k}{k!}.
$$

We apply Proposition 1.1 to the free unitary algebra and obtain

$$
\tilde{\gamma}(t) = e^{-t}\tilde{c}(t) = \sum_{p \geq 0} \frac{(-1)^p t^p}{p!} \sum_{q \geq 0} t^q = \sum_{n \geq 0} n! \left(\sum_{k=0}^n \frac{(-1)^k}{k!} \right) \frac{t^n}{n!},
$$

and comparing the coefficients of this series with γ_n we complete the proof. \blacksquare

LEMMA 1.3: If for a unitary P.I. algebra A there exists k such that $\gamma_{2k}(A) = 0$, *then* $\gamma_m(A) = 0$ for all $m \geq 2k$.

Proof. Let $\gamma_{2k}(A) = 0$, i.e. $\Gamma_{2k} \subset \text{Id}(A)$ and let

$$
u = [x_{\sigma(1)}, \ldots] \ldots [\ldots, x_{\sigma(n)}] \in \Gamma_n, \quad \sigma \in S_n, \quad n > 2k.
$$

If u is a product of commutators of length 2 then n is even and

$$
u = ([x_{\sigma(1)}, x_{\sigma(2)}] \dots [x_{\sigma(2k-1)}, x_{\sigma(2k)}])[x_{\sigma(2k+1)}, x_{\sigma(2k+2)}] \dots [x_{\sigma(n-1)}, x_{\sigma(n)}]
$$

belongs to $\text{Id}(A)$. If u contains a commutator of length greater than 2, e.g.

$$
u=[x_{\sigma(1)},\ldots]\ldots[x_{\sigma(p)},x_{\sigma(p+1)},x_{\sigma(p+2)},\ldots]\ldots[\ldots,x_{\sigma(n)}],
$$

then the substitution $y \rightarrow [x_{\sigma(p)}, x_{\sigma(p+1)}]$ shows that

$$
u = [x_{\sigma(1)}, \ldots], \ldots, [x_{\sigma(p)}, x_{\sigma(p+1)}], x_{\sigma(p+2)}, \ldots], \ldots, [x_{\sigma(n)}]
$$

is a consequence of a commutator from Γ_{n-1} . By inductive arguments we obtain that $u \in \mathrm{Id}(A)$.

Remark: If E is the infinite-dimensional Grassmann algebra, then $c_n(E) = 2^{n-1}$ [KR], and the proof of 1.4(a) below implies that $\gamma_{2k}(E) = 1$ and $\gamma_{2k+1}(E) = 0$ for all k .

THEOREM 1.4: *Let* A be a unitary *P.L algebra. Then* either

- (a) $c_n(A) \geq 2^{n-1}$ *(hence* $c_n(A)$ *is exponential) or*
- (b) There exist an integer $k \geq 0$ and a rational number *r* such that

$$
c_n(A) = r \cdot n^k + \mathcal{O}(n^{k-1}),
$$

and

$$
\frac{1}{k!} \leq r \leq \left(\frac{1}{e}\right)_k \stackrel{\text{def}}{=} \frac{1}{2!} - \frac{1}{3!} + \cdots + (-1)^k \frac{1}{k!}.
$$

Proof: (a) If $\gamma_{2\ell}(A) \neq 0$ for all $\ell \geq 0$, then by 1.1,

$$
c_n(A) = \sum_{j=0}^n \binom{n}{j} \gamma_j(A)
$$

$$
\geq \sum_{j\geq 0} \binom{n}{2j}
$$

$$
= 2^{n-1}.
$$

(b) Assume $\gamma_{2\ell}(A) = 0$ for some ℓ . By 1.3, there exists $k \geq 0$ such that $\gamma_k(A) \neq 0$ and $\gamma_m(A) = 0$ for all $m > k$. Thus $c_n(A) = \sum_{j=0}^k {n \choose j} \gamma_j(A)$, so

$$
\binom{n}{k} \leq c_n(A) = \binom{n}{k} \gamma_k(A) + \mathcal{O}(n^{k-1}) = \frac{\gamma_k(A)}{k!} n^k + \mathcal{O}(n^{k-1}).
$$

The proof follows from 1.2 since $\gamma_k(A)$ is an integer, and $1 \leq \gamma_k(A) \leq \dim \Gamma_k$.

2. Non-unitary algebras with polynomial growth of the codimensions

The purpose of this section is to construct, for any $0 < k \in \mathbb{Z}$, an algebra A such that $c_n(A) \simeq kn^{k-1}$. Given any $0 < q \in \mathbb{Q}$, this allows us to construct (Theorem 3.4 below) an algebra A such that $c_n(A) \simeq qn^p$, for a suitable p.

Fix a positive integer k. Let $M_k(F)$ be the $k \times k$ matrix algebra with entries from F and let $\{e_{pq} | p,q = 1,2,\ldots,k\}$ be the ordinary basis of matrix units for $M_k(F)$, i.e. the only non-zero entry of e_{pq} is 1 in the intersection of the p-th row and the q-th column. Let i be an integer, $1 \leq i \leq k$, and let

$$
A_i = Fe_{ii} + \sum_{p < q} Fe_{pq}
$$

be the subalgebra of $M_k(F)$ consisting of all upper triangular matrices with all the entries on the diagonal equal to 0 except the (i, i) -entry.

LEMMA 2.1: *The* algebra *Ai satisfies the polynomial identity*

$$
f_i(x_1,\ldots,x_{k+1})=x_1\ldots x_{i-1}[x_i,x_{i+1}]x_{i+2}\ldots x_{k+1}=0.
$$

Proof: Represent a matrix in A_i by $(e_{ii}, e_{pq} | p < q)$ (i.e., a matrix in A_i is a linear combination of these matrix units). Trivially, $[A_i, A_i]$ consists of strictly upper triangular matrices, and these are represented by $(e_{pq} | p < q)$ (or (e_{pq}) in short). We need to prove that

(*)
$$
\underbrace{(e_{ii},e_{pq})\cdots(e_{ii},e_{pq})}_{i-1}(e_{pq})\underbrace{(e_{ii},e_{pq})\cdots(e_{ii},e_{pq})}_{k-i}=0.
$$

We prove first

CLAIM: If e_{rs} has a nonzero coefficient in the product

$$
\underbrace{(e_{ii},e_{pq})\cdots(e_{ii},e_{pq})}_{i-1}(e_{pq}),
$$

then $i+1 \leq s$.

Indeed, e_{rs} can be written as $e_{rs} = e_{r_1 s_1} \cdots e_{r_i s_i}$ with $r_i < s_i$, and for each $1 \leq j \leq i-1$, $e_{r_js_j}$ either equals e_{ii} or $r_j < s_j$.

CASE 1: For all $1 \leq j \leq i-1$, $e_{r_i s_j} \neq e_{ii}$. It then follows that $r_1 + 1 \leq s_1$, $r_1 + 2 < s_2, \ldots, r_1 + i \leq s_i$, so $i + 1 \leq s_i$ because $1 \leq r_1$.

CASE 2: The matrix unit e_{ii} appears in that product, so $e_{r,s} = e'e_{ii}e''e_{r_is_i}$. Thus $e'' = e_{ir_i}$ with $i \leq r_i < s_i = s$, so, again, $i + 1 \leq s$.

We can now prove (*): Assume e_{uv} appears in (*) with a nonzero coefficient, then $e_{uv} = e_{r,s}e_{r_{i+1}s_{i+1}}\cdots e_{r_ks_k}$, and by the above, $i+1 \leq s$. It follows that $e_{r_i s_j} \neq e_{ii}$ (and hence $r_j < s_j$) for all j such that $i + 1 \leq j \leq k$. Thus $k + 1 =$ $i+1+k-i \leq s+k-i \leq s_k=v$, a contradiction.

Remark: Given *n*, *k* and *i*, $1 \leq i \leq k \leq n$, let

$$
L(i, n, k) = \{ \sigma \in S_n \mid \sigma(i) < \sigma(i+1) < \cdots < \sigma(n-k+i) \}.
$$

Then

$$
|L(i, n, k)| = \prod_{j=n-k+2}^{n} j = {n \choose k-1} \cdot (k-1)! = n^{k-1} + \mathcal{O}(n^{k-2}).
$$

Indeed, $\sigma \in L(i, n, k)$ is completely determined by first choosing $k - 1$ values from $\{1,\ldots,n\}$, then ordering them as

$$
\sigma(1),\ldots,\sigma(i-1),\sigma(n-k+i+1),\ldots,\sigma(n).
$$

Now let $1 \leq i \leq j \leq k \leq n$, then $L(i, n, k) \cap L(j, n, k) = L(i, n, \overline{k})$, where $\overline{k} = k - j + i \leq k - 1$, hence $|L(i, n, k) \cap L(j, n, k)| \simeq n^{\overline{k}-1} = \mathcal{O}(n^{k-2})$. By "the principle of inclusion-exclusion" of Combinatorics,

$$
\left| \bigcup_{i=1}^{k} L(i, n, k) \right| \geq \sum_{i=1}^{k} |L(i, n, k)| - \sum_{1 \leq i \neq j \leq k} |L(i, n, k) \cap L(j, n, k)|
$$

$$
\approx kn^{k-1} + \mathcal{O}(n^{k-2})
$$

$$
\approx kn^{k-1}.
$$

Let $1 \leq i \leq k \leq n$ and $1 \leq \ell \leq n$. Denote

$$
L(i, n, k, \ell) = \{ \sigma \in L(i, n, k) \mid \sigma(n - k + i + 1) < n - \ell \},
$$

 $L'(i, n, k, \ell) = L(i, n, k) \setminus L(i, n, k, \ell)$ if $1 \leq i \leq k-1$, and $L(k, n, k, \ell) = L(k, n, k)$. Also, let

$$
L(n,k) = \bigcup_{i=1}^{k} L(i,n,k,2k-3).
$$

Then

LEMMA 2.2:

$$
|L(n,k)|_{n\stackrel{\infty}{\to}\infty}kn^{k-1} \quad (\text{In fact, } |L(n,k)| = kn^{k-1} + \mathcal{O}(n^{k-2}).)
$$

Proof: Clearly, $L_1 \supseteq L(n,k) \supseteq L_1 \setminus L_2$, where $L_1 = \bigcup_{i=1}^k L(i,n,k)$ and $L_2 =$ $\bigcup_{i=1}^{k} L'(i, n, k, 2k-3)$. By the above, $|L_1| \simeq kn^{k-1}$, hence it suffices to show that for each $1 \leq i \leq k$ and any ℓ , $|L'(i, n, k, \ell)| = \mathcal{O}(n^{k-2})$. This follows since $L'(k,n,k,\ell) = \emptyset$, and for $1 \leq i \leq k-1$,

$$
|L'(i, n, k, \ell)| = (\ell + 1)|L(i, n - 1, k - 1)|
$$

\n
$$
\simeq (\ell + 1)(n - 1)^{k - 2}
$$

\n
$$
= \mathcal{O}(n^{k - 2}).
$$

LEMMA 2.3: Let $A = A_1 \oplus \cdots \oplus A_k$, A_i , $i = 1, \ldots, k$, as above. Then

- (a) The monomials $\{M_{\sigma}(x_1,...,x_n) | \sigma \in L(i,n,k)\}\$ are linearly independent *modulo* $\mathrm{Id}(A_i), i = 1, \ldots, k.$
- (b) The monomials $\{M_{\sigma}(x_1,...,x_n) | \sigma \in L(n,k)\}\$ are linearly independent *modulo* Id(*A*). (Here $\sigma \in S_n$ and $M_{\sigma}(x_1,...,x_n) = x_{\sigma(1)} \cdots x_{\sigma(n)}$.)

Note: From 2.3 (a) and [OR] it follows that all the identities of A_i are consequences of $x_1 \ldots x_i[x_i, x_{i+1}]x_{i+2} \ldots x_{k+1}$.

Proof: We prove (b). The proof of (a) is similar $-$ but easier $-$ and is contained in "Case 1" below.

Assume that $g(x_1,...,x_n) = \sum_{\sigma \in L(n,k)} a_{\sigma} \cdot M_{\sigma}(x_1,...,x_n) \in \text{Id}(A)$. We denote $L^*(n, k) = \{\sigma \in L(n, k) \mid a_{\sigma} \neq 0\}$ and proceed to show that $L^*(n, k) = \emptyset$.

Assume that $L^*(n,k) \neq \emptyset$. Denote $\underline{a}_t = (a_{1t},\ldots,a_{kt}) \in A_1 \oplus \cdots \oplus A_k$, $1 \leq t \leq$ *n*. Since $g(\underline{a_1}, \ldots, \underline{a_n}) = (g(a_{11}, \ldots, a_{1n}), \ldots, g(a_{k1}, \ldots, a_{kn}))$, it suffices to show that there exist $1 \leq j \leq k$ and $\overline{x}_1,\ldots,\overline{x}_n \in A_j$ such that $g(\overline{x}_1,\ldots,\overline{x}_n) \neq 0$. So assume $g(\overline{x}_1,\ldots,\overline{x}_n) = 0$ for any $\overline{x}_1,\ldots,\overline{x}_n \in A_j, 1 \leq j \leq k$.

Let $j = \min\{i \mid L^*(n,k) \cap L(i,n,k) \neq \emptyset\}$ and let $\tau \in L(j,n,k)$ and $a_{\tau} \neq 0$. Substitute

$$
(\overline{x}_{\tau(1)}, \ldots, \overline{x}_{\tau(j-1)}, \overline{x}_{\tau(j)}, \ldots, \overline{x}_{\tau(n-k+j)}, \overline{x}_{\tau(n-k+j+1)}, \ldots, \overline{x}_{\tau(n)})
$$

= $(e_{1,2}, \ldots, e_{j-1,j}, e_{j,j}, \ldots, e_{j,j}, e_{j,j}, e_{j,j+1}, \ldots, e_{k-1,k}).$

Notice that $\overline{x}_1,\ldots,\overline{x}_n \in A_i$. Clearly,

$$
0 = g(\overline{x}) = a_{\tau}e_{1k} + \sum_{\tau \neq \sigma \in L^*(n,k)} a_{\sigma} \cdot M_{\sigma}(\overline{x}_1,\ldots,\overline{x}_n).
$$

If $a_{\sigma} M_{\sigma}(\overline{x}) = 0$ for all $\tau \neq \sigma \in L^*(n,k)$, then $a_{\tau} e_{1k} = 0$, so $a_{\tau} = 0$, a contradiction. Assume $a_{\sigma} M_{\sigma}(\overline{x}) \neq 0$ for some $\tau \neq \sigma \in L^*(n, k)$. Then $M_{\sigma}(\overline{x}) \neq 0$, and it follows that $\sigma(s) = \tau(s)$ for $s = 1, \ldots, j-1, n-k+j+1, \ldots, n$. Since $\sigma \in \bigcup_{i=1}^k L(i, n, k)$, there exists a minimal $i (1 \leq i \leq k)$ such that $\sigma \in L(i, n, k)$. By the minimality of j, $j \leq i$.

CASE 1: $i = j$. Then $\sigma(j) < \cdots < \sigma(n - k + j)$, and since these numbers are a permutation of $\tau(j) < \cdots < \tau(n-k+j)$, hence $\sigma(s) = \tau(s)$ also for $s = j, \ldots, n - k + j$. Thus $\sigma = \tau$, a contradiction.

CASE 2: $j + 1 \leq i$. Hence

$$
\sigma(n-k+j) < \sigma(n-k+j+1),
$$

so $\sigma(i) < \cdots < \sigma(n-k+j+1) = \tau(n-k+j+1)$. Thus, $\tau(n-k+j+1)$ is an upper bound for an increasing sequence of length $n - k + j - i + 2 \ge n - 2k + 3$. Hence

$$
\tau(n-k+j+1) \ge n-2k+3,
$$

so $\tau \notin L^*(n, k)$, again a contradiction.

We can now prove

THEOREM 2.4: Let $A = A_1 \oplus \cdots \oplus A_k$ as above, and let $k \leq n$. Then

- (a) $c_n(A_i) = |L(i, n, k)| = n^{k-1} + \mathcal{O}(n^{k-2}) \simeq n^{k-1}$, and
- (b) $c_n(A) \simeq kn^{k-1}$. (In fact, $c_n(A) = kn^{k-1} + \mathcal{O}(n^{k-2})$.)

Proof: (a) By 2.3(a), $c_n(A_i) \ge |L(i,n,k)|$. By 2.1 and by [OR, Th. 3.1] (or by an easy direct argument), $c_n(A_i) \leq n(n-1)\cdots(n-k+2) = |L(i, n, k)|$. (b) By 2.2 and 2.3,

$$
c_n(A) \ge |L(n,k)| \simeq kn^{k-1}.
$$

The opposite inequality follows easily: $\text{Id}(A) = \text{Id}(\bigoplus A_i) = \bigcap \text{Id}(A_i)$, hence

$$
\frac{V_n}{V_n \cap \text{Id}(A)} = \frac{V_n}{\bigcap (V_n \cap \text{Id}(A_i))}
$$
imbeds naturally into $\bigoplus \frac{V_n}{V_n \cap \text{Id}(A_i)}$.

Thus, by (a),

$$
c_n(A) \le \sum_{i=1}^k c_n(A_i) = kn^{k-1} + \mathcal{O}(n^{k-2}). \qquad \blacksquare
$$

3. Applications

The main tool for applications here is Theorem 1.4 in [BR], which is a consequence of a theorem of Formanek, and which we now reproduce.

THEOREM 3.1 ([BR, 1.4]): Let $c_n(A)$ denote the codimensions of a P.I. algebra *A. For j = 1,..., k, let I_j be T ideals,* $I_j = \text{Id}(A_j) \subseteq F(X)$ *, such that* $c_n(A_j) \simeq$ $a_j n^{e_j} \alpha_j^n$, $\alpha_1, \ldots, \alpha_k \geq 1$. Let $I = I_1 \cdots I_k$ and let A satisfy $I = \text{Id}(A)$. Then $c_n(A) \simeq an^e \alpha^n$, where $\alpha = \alpha_1 + \cdots + \alpha_k$, $e = e_1 + \cdots + e_k + k-1$ and

$$
a = a_1 \cdots a_k \frac{\alpha^{e_1} \cdots \alpha_k^{e_k}}{(\alpha_1 + \cdots + \alpha_k)^e}.
$$

We also need the following variant of that theorem:

THEOREM 3.2: Let B_1 be a nilpotent algebra of class $\ell + 1$: $c_{\ell}(B_1) \neq 0$, $c_{\ell+i}(B_1) = 0, i = 1, 2, \ldots$ *Denote* $c_{\ell}(B_1) = p_{\ell}$. Let B_2 be a P.I. algebra such that $c_n(B_2)$ _n \cong_{∞} an^e α^n (a > 0, $\alpha \ge 1$). Let B be a P.I. algebra such that $Id(B) = Id(B_1) \cdot Id(B_2)$. *Then*

$$
c_n(B) \simeq \frac{p_\ell \cdot a}{\ell! \alpha^{\ell+1}} \cdot n^{\ell+e+1} \cdot \alpha^n.
$$

Proof: Denote $w_n = \sum_{j=0}^n {n \choose j} c_j(B_1) \cdot c_{n-j}(B_2)$. It follows from a formula of Formanek (see [BR, 1.1] for details) that $c_n(B) = c_n(B_1) + c_n(B_2) + n w_{n-1} - w_n$.

Thus, the proof of 3.1 obviously follows from the following

LEMMA 3.3: Let $\{p_n\}$, $\{q_n\}$ *satisfy*

- (1) For some $\ell, p_{\ell} \neq 0$ and $p_{\ell+i} = 0, i = 1, 2, \ldots,$
- (2) $q_{n_n} \underset{n \to \infty}{\simeq} a n^e \alpha^n, a > 0, \alpha \geq 1.$

Define $w_n = \sum_{j=0}^n {n \choose j} p_j q_{n-j}$ and $r_n = p_n + q_n + n w_{n-1} - w_n$. Then

$$
r_n \simeq \frac{p_\ell \cdot a}{\ell! \alpha^{\ell+1}} \cdot n^{\ell+e+1} \cdot \alpha^n.
$$

Proof: We have

$$
w_n = \sum_{j=0}^{\ell} \binom{n}{j} p_j q_{n-j}
$$

= $\binom{n}{\ell} p_{\ell} q_{n-\ell} + \sum_{j=0}^{\ell-1} \binom{n}{j} p_j q_{n-j}$

$$
\simeq p_{\ell} \frac{n^{\ell}}{\ell!} \cdot a(n-\ell)^{e} \cdot \alpha^{n-\ell} + \sum_{j=0}^{\ell-1} \binom{n}{j} p_j \frac{n^j}{j!} a(n-j)^{e} \cdot \alpha^{n-j}.
$$

Now $n - \ell \simeq n \simeq n - j$, hence the first summand dominates the sum, so

$$
w_n \simeq \frac{p_\ell \cdot a}{\ell! \alpha^k} \cdot n^{\ell+e} \cdot \alpha^n.
$$

It clearly follows that nw_{n-1} dominates r_n , hence

$$
r_n \simeq n w_{n-1}
$$

\n
$$
\simeq n \cdot \frac{p_{\ell} \cdot a}{\ell! \alpha^{\ell}} (n-1)^{\ell+e} \alpha^{n-1}
$$

\n
$$
\simeq \frac{p_{\ell} \cdot a}{\ell! \alpha^{\ell+1}} \cdot n^{\ell+e+1} \cdot \alpha^n.
$$

We can now prove

THEOREM 3.4: *Let q be an arbitrary positive rational number. Then* there *exists a* (non-unitary) P.I. algebra B such that $c_n(B) \simeq qn^p$, for a suitable positive *integer p.*

Proof: Let $q = u/v$, u , v be positive integers. Construct a commutative algebra B_1 which is nilpotent of class $v + 1$, e.g. B_1 has basis t, t^2, \ldots, t^v , and $t^{v+1} = 0$. Thus $c_j(B_1) = 1$ if $1 \le j \le v$ and $c_j(B_1) = 0$ if $v < j$.

Denote $k = u \cdot ((v - 1)!)$ and let $B_2 = A = A_1 \oplus \cdots \oplus A_k$ as in 2.3:

$$
c_n(B_2) \simeq kn^{k-1}.
$$

Let B be a P.I. algebra with T -ideal of identities

$$
\mathrm{Id}(B_3) = \mathrm{Id}(B_1) \cdot \mathrm{Id}(B_2).
$$

Applying 3.1, we obtain $(a = k, e = k - 1, \alpha = 1, \ell = v, \text{ and } p_{\ell} = 1)$:

$$
c_n(B_3) \simeq \frac{k}{v!} n^{v+k} = q n^{v+k}.
$$

References

- [BR] A. Berele and A. Regev, *Codimensions of products and of intersections of verbally prime T-ideals,* to appear in Israel Journal of Mathematics.
- [D1] V. Drensky, *Codimensions of T-ideals and Hilbert series of relatively free algebras,* Journal of Algebra 91 (1984), 1-17.
- [D2] V. Drensky, *Extremal varieties of algebras. I* (Russian), Serdika 13 (1987), 320-332.
- [D3] V. Drensky, *Relations for the cocharacter sequences of T-ideals,* Proceedings of the International Conference on Algebra Honoring A. Malcev, Contemporary Mathematics 131 (1992), 285-300.
- [H] P. Halpin, *Some Poincaré series related to identities of* 2×2 *matrices, Pacific* Journal of Mathematics 107 (1983), 107-115.
- [K] A.R. Kemer, *T-ideals with power growth of the codimensions are Specht* (Russian), Sibirskii Matematicheskii Zhurnal 19 (1978), 54-69; English translation: Siberian Mathematical Journal 19 (1978), 37-48.
- [KR] D. Krakowski and A. Regev, *The polynomial identities of the Grassman algebra,* Transactions of the American Mathematical Society 181 (1973), 429-438.
- [OR] J.B. Olsson and A. Regev, *Colength sequence of some T-ideals,* Journal of Algebra 38 (1976), 100-111.
- [Re] A. Regev, *Existence of identities in A ® B,* Israel Journal of Mathematics 2 (1972), 131-152.
- [Sp] W. Specht, *Gesetze in Ringen. I,* Mathematische Zeitschrift 52 (1950), 557-589.