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ABSTRACT
Let cn{A) denote the codimensions of a P.I. algebra A, and assume ¢, (A}
has a polynomial growth: ca(A) = gn*. Then, necessarily, g € Q [D3].
If 1 € A, we show that
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bl e

where e = 2.71.... In the non-unitary case, for any 0 < q € Q, we
construct A, with a suitable k, such that ca(A) =z gn*.
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Introduction

In this paper we consider (non-unitary) P.L. algebras A over a field F' of any char-
acteristic. It is known that the codimensions ¢, (A) are exponentially bounded
[Re], i.e. there exists a constant « such that ¢,(4) < a™, n = 1,2,.... Our
purpose is to obtain more detailed information about the growth of ¢, (A4). Up
till now, all the known examples in characteristic 0 show that either ¢, (A) is of

polynomial growth or there exist constants ay, as, £1,£2 and « such that for all n
asn’?a™ < en(A) < ainfa™.

For a large class of P.I. algebras A, it is now known that ¢, (A) asymptotically
behaves as

(0.1) cn(A)=b-n9.a"

for some b, ¢ and . In all these cases,

(0.1.1) a €N,
1
(0.1.2) g€3L,
and
1 8
0.1. b= I
(9-1.8) (%)

for some r € Q and 0 < s € Z [BR]. It is reasonble to conjecture {0.1) and (0.1.1)
in general.

The inverse problem here is that of constructing A with ¢, ~ b-n9 - a™ for
given b, g and o. When a = 1, this is the case of a polynomial growth of ¢, (A).
A description of such algebras A (in characteristic 0) was given by Kemer [K] in
the language of the cocharacter sequence of A. Further, it is known that

cn(A) = gn* + O(n*1) =~ gn*

for a rational number ¢ [D3].
The main goal of our paper is to determine the value of ¢ in the case of
polynomial growth of ¢,(A). It is very surprising that the answer depends on

whether or not the algebra is unitary. If c,(A4) ~ gn* and 1 € A, we show that
1 (-DF 1
e

1
SqS g ogtoo T

1
k!
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where e = 2.71.... On the other hand, for non-unitary algebras and for any
positive rational number g we give explicit constructions of algebras such that

¢n(A) is asymptotically equal to gn® for a suitable k.

1. Unitary algebras

Throughout this paper F is a field of any characteristic and all algebras are
F-algebras. We denote by F(X) the free non-unitary associative algebra freely
generated by a countable set X = {z,z,...} and by F + F(X) the free uni-
tary algebra with the same set of free generators. As usual V,, C F(X) is the
vector space of the multilinear polynomials in z1,...,2,. For a P.I. algebra A
we denote by Id(A) the T-ideal of the polynomial identities for A. The sequence
cn(A) = dim(V,/V, N1d(4)), n = 1,2,..., is called the codimension sequence
of A. Assuming that co(A) = 1, it is convenient to introduce the generating

function

(A1) =) cn(AN"

n>0

as well as the exponential generating function
- |38
e(A,t) = ;)cn(A);l—!.

Recall [Sp| that the polynomial f(z1,...,2,) € V,, is called “proper” if it is a
linear combination of products of (long) commutators

We denote by [, the vector space of the proper polynomials of degree n. For a
P.I. algebra A we introduce the n-th proper codimension

Yn(A4) = diml, /(T, NId(A)), n=0,1,2,...,

and the related generating functions

A = YA, 540 = 3 A5

n>0 n>0

Drensky [D1, D2] has discovered the following relations between the ordinary and

the proper codimensions.
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ProposITION 1.1 ([D1, Corollary 2.5], (D2, p. 322|): For any unitary algebra
A,

1 t
C(Aa t) - m'y (Aa :) )
&(A, 1) = e'¥(A,1).
In particular, if there exists k such that v, (A) # 0 and v¢(A) = 0 for £ > k, then
5 (n
o) = 3 (et
£=0
and ¢y, (A) is a polynomial of degree k in n.

Note that the proofs in [D1, D2] are in characteristic 0. However, they hold
without any changes in any characteristic because the result of Specht [Sp] is
based on the fact that the free associative algebra is the universal enveloping

algebra of the free Lie algebra and this is true over any field.

CoROLLARY 1.2 ([Sp]): For every n =0,1,2,...

. 1 1 1 (-1)
dim I, = n! (1-ﬁ+§_§+"'+ - )
Proof: Let
&(t) =) dim an-, =yt
n>0 n n>0
. . tk tk
’)’(t) = Zdlm FkF = nyky
k>0 k>0

We apply Proposition 1.1 to the free unitary algebra and obtain

_1\PP m o (_1)\k n
=i =Y. X o S (z (k_”) v

p>0 g0 n>0

and comparing the coefficients of this series with -,, we complete the proof. |
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LEMMA 1.3: If for a unitary P.I. algebra A there exists k such that o, (A) = 0,
then v, (A) = 0 for all m > 2k.

Proof: Let vor(A) =0, i.e. 'y C Id(A) and let
u=[Toy,--] o[ Tom)] €T, o€ Sn, n>2k
If u is a product of commutators of length 2 then n is even and

= ([To(1), Ta@)] - - - [To(2h-1)> To@20)D[To(20+1)s To (2642)) - « - [To(n—1)> To ()]

belongs to Id(A). If v contains a commutator of length greater than 2, e.g.

u = [:L‘a(l), .. ] o [.’Ea(p), Lo(p+1)s Lo(p+2)s - - ] cee [ vy .’L‘a(n)],

then the substitution y — [Zo(p), Zo(pt1)] Shows that

u = [11,,(1), . ] ces [[z‘g(p), :L‘U(p+1)], .’L‘a(p_l_z), . ] e [ . ,:l,‘o(n)]

is a consequence of a commutator from I',,_;. By inductive arguments we obtain
that u € Id(A).

Remark: If E is the infinite-dimensional Grassmann algebra, then ¢, (E) = 2"~!
[KR], and the proof of 1.4(a) below implies that vy, (E) = 1 and 79,41 (F) = 0
for all .

THEOREM 1.4: Let A be a unitary P.I. algebra. Then either
(a) en(A) > 271 (hence c,(A) is exponential) or
(b) There exist an integer k > 0 and a rational number r such that

cn(A) =7 -nF 4+ O(nF 1),

and
1 1\ gl 1
]

<r<|[Z2) E___ 1 _... —1)Y—.
k.—r_<e)k TR I

Proof: (a) If y94(A) # 0 for all £ > 0, then by 1.1,

) =3 (M)

=0
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(b) Assume 72¢(A) = 0 for some ¢. By 1.3, there exists £ > 0 such that
Ye(A) # 0 and v, (A) = 0 for all m > k. Thus c,(A) = Z?zo (?)'yj(A), 0

") < en(d) = () e(d) + Oty = B oy ooy,
(0) === (3) g

The proof follows from 1.2 since v, (A) is an integer, and 1 < v4(A) < dimTy.

2. Non-unitary algebras with polynomial growth of the codimensions

The purpose of this section is to construct, for any 0 < k € Z, an algebra A such
that ¢, (A) =~ kn*~!. Given any 0 < ¢q € Q, this allows us to construct (Theorem
3.4 below) an algebra A such that ¢, (A) ~ gnP?, for a suitable p.

Fix a positive integer k. Let My (F) be the k x k matrix algebra with entries
from F and let {epq | p,g = 1,2,...,k} be the ordinary basis of matrix units for
M (F), i.e. the only non-zero entry of e, is 1 in the intersection of the p-th row
and the g¢-th column. Let 7 be an integer, 1 <1 < k, and let

Ai=Fe;+Y Fep
p<q
be the subalgebra of M (F) consisting of all upper triangular matrices with all
the entries on the diagonal equal to 0 except the (3, 1)-entry.

LemMMaA 2.1: The algebra A; satisfies the polynomial identity

fi(l‘l, .. .,.’Ek+1) =x1.. .xi_l[xi, $i+1]$i+2 o o T4l = 0.
Proof: Represent a matrix in A; by (e;;,epq | p < ¢) (i-e., a matrix in A; is a
linear combination of these matrix units). Trivially, [4;, A;] consists of strictly
upper triangular matrices, and these are represented by (e,q | p < q) (or (epq) in
short). We need to prove that

(*) (€iis €pg) *~ - (€iis €pq) (€pq) (€iis €pg) * - (€iis €pg) = 0.

- " /
o ——

i—1 k—1

We prove first

Cram: If e, has a nonzero coefficient in the product

(e‘ii’ ePlI) e (ei‘ia epq)(epq)»

v

i—1
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theni+1<s.
Indeed, e,s; can be written as e,; = e,5, ---€r,s; With 7; < s;, and for each

1<j<i~—1, e, either equals e;; or r; < s;.

Casg 1: Foralll <j<i-1,e.s # e It then follows that ry +1 < sy,
r+2<sg,...,711+1<s;,80t+1<s; because 1 < 7.
CASE 2: The matrix unit e;; appears in that product, so e, = €'e;;e”ey s,.
Thus " = e;,., with ¢t <r; < s; = s, s0, again, i +1 < s.

We can now prove (*): Assume e,, appears in (x) with a nonzero coefficient,
then eyy = €rs€r, 15,4, * " Erys,» and by the above, i +1 < s. It follows that
er;s; 7 €ii (and hence r; < s;) for all jsuch thati+1<j<k. Thusk+1=
t+1+k—i<s+k—1<s,=w,a contradiction. |

Remark: Givenn, kand i, 1 <i<k <n,let
L(i,nk)={o€Sp|o@) <o(i+1)<---<o(n—k+1)}

Then

n

|L(i,n, k)| = H Jj= (k 7_l 1) (k=1 =nF 4 O(nF2).

j=n-—k+2
Indeed, o € L(i,n, k) is completely determined by first choosing k — 1 values
from {1,...,n}, then ordering them as

o(1),...,0G-1),0(n—k+i+1),...,0(n).

Now let 1 < ¢ < j < k < n, then L{i,n, k) N L(j,n, k) = L(%,n, k), where
k=k—j+i<k—1, hence |L(i,n,k) N L(j,n, k)| = n*~1 = O(n*~2). By “the
principle of inclusion-exclusion” of Combinatorics,

k k
lUL(i,n,k)‘ZZIL(i,n,k)l— Y ILG.n, k)N LGy, k)|

1<ii<k
~ kn*t 4 O(nk-2)
~ knkt

Let 1 <i<k <nand1<?<n. Denote

L(i,n,k, 0y ={oc € L(i,n, k) |o(n—k+i+1)<n— £},
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L'(i,n, k,£) = L(i,n, E)\L(i,n, k, ) if 1 < i < k—1, and L(k,n, k, &) = L(k,n, k).

Also, let
k

L(n, k) = | L(i,n,k, 2k - 3).
=1

Then
LEMMA 2.2:
[L(n,k)| =_kn*"! (In fact, |L(n, k)| = kn*1 + O(n*~2).)

Proof: Clearly, L; O L(n,k) 2 Li\L3, where [; = Ule L(i,n,k) and Ly =
Ule L'(i,n, k,2k — 3). By the above, |L1| ~ kn*~!, hence it suffices to show
that for each 1 < i < k and any ¢, |L'(i,n, k, £)| = O(n*~2). This follows since
L'(k,n,k,0) =0, and for 1 <1<k -1,
L' (3, n, k, )] = (£ + 1)|L(i,n — Lk — 1)
> ((+1)(n—1)F?
=O(n*?),
LEMMA 2.3: Let A= A1 B--- D A, A;,i=1,...,k, as above. Then
(a) The monomials {M,(z1,...,2a) | ¢ € L(i,n,k)} are linearly independent
modulo Id(4;),i=1,...,k.
(b) The monomials {My(x1,...,%n) | ¢ € L{n,k)} are linearly independent
modulo Id(A). (Here o € S, and M,(x1,...,%Tn) = Toq1) " To(n)-)

Note: From 2.3 (a) and [OR] it follows that all the identities of A; are

consequences of Ty ... Zi[T;, Tip1]|Tiva - - Tht1-

Proof: We prove (b). The proof of (a) is similar — but easier — and is contained
in “Case 1”7 below.

Assume that g(zq,...,2,) = ZaéL(n,k) ag - Mo(z1,...,2,) € Id(A). We de-
note L*(n,k) = {0 € L(n,k) | a; # 0} and proceed to show that L*(n, k) = 0.

Assume that L*(n, k) # 0. Denote a;, = (a1t,...,0kt) € A1 D B Ap, 1 <t <
n. Since g(ay,...,a,) = (9(a11,..-,01n)s- ., g{@k1, - - ., Gkn)), it suffices to show
that there exist 1 < j < k and Zy,...,Zn € A; such that ¢g(%y,...,T,) #0. So
assume ¢(Z1,...,T,) =0 for any 7y,..., T, € 4;, 1 <j < k.

Let j = min{¢ | L*(n,k) N L(i,n, k) # 8} and let 7 € L(j,n, k) and a, # 0.
Substitute

(f‘r(l)a ERRE] T‘r(j—l)a T’r(j)v [RER} T‘r(n—k-{-j)a —:fT(n-—k+j+1)7 cety Er(n))
=(er2 oor €o1gs € e €y €i+ls ooy €k—Llk)-
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Notice that 7,,...,%, € A;. Clearly,

0=g(@) =arei+ Y. ao-My(T1,...,Tn).
r#oEL" (n,k)
If a,M,(%) = 0 for all T # o € L*(n, k), then arey;, = 0, so a, = 0, a contra-
diction. Assume a,M,(Z) # 0 for some 7 # o € L*(n,k). Then M,(T) < 0,
and it follows that o(s) = 7(s) for s =1,...,5—1,n—k+3j+1,...,n Since
o€ Ui;l L{i,n, k), there exists a minimal ¢ {1 < ¢ < k) such that o € L{i,n, k).
By the minimality of 7, j < 1.

CAsSE 1: i = j. Then ¢(j) < --+ < o(n — k + j), and since these numbers
are a permutation of 7(j) < --- < 7(n — k + j), hence o(s) = 7(s) also for
$=73,...,n—k+j. Thus ¢ = 7, a contradiction.

CASE 2: 7+ 1<t Hence
ocln—k+j)<on—-k+j+1),

soo(i)<--<o(n—k+j+1)=1(n—k+j+1). Thus, 7(n—k+j+1)is an
upper bound for an increasing sequence of lengthn —k+j—-1+2>n—2k+ 3.
Hence

Tn—k+j+1)>n—-2k+3,

so T & L*(n, k), again a contradiction. |
We can now prove

THEOREM 2.4: Let A=A, & ---® Ay as above, and let k < n. Then
(a) cn(4;) = |L(E,n, k)| = n*~1 + O(n*~2) ~ nk=1, and
(b) en(A) ~ kn*=1. (In fact, c,(A4) = knF~1 4 O(n*2).)

Proof: (a) By 2.3(a), cn(A;) > |L(i,n,k)|. By 2.1 and by [OR, Th. 3.1] (or by
an easy direct argument), c,(4;) <n(n—1)---(n —k+2) = |L(z,n, k)|.
(b) By 2.2 and 2.3,
cn(A) > |L(n, k)| = kn*~1.
The opposite inequality follows easily: Id(A) = Id(ED A;) = [NId(A;), hence

Vi, Va
V, n1d(A) ~ NV, N1d(4;))

. . Va
imbeds naturally into @ md_(jl—)
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Thus, by (a),

k
cn(A) <) en(di) =kn* 1+ O(nF72).  n

3. Applications

The main tool for applications here is Theorem 1.4 in [BR], which is a consequence
of a theorem of Formanek, and which we now reproduce.

THEOREM 3.1 ([BR, 1.4]): Let c,(A) denote the codimensions of a P.I. algebra
A Forj=1,...,k, let I; be T ideals, I; =1d(A;) C F(X), such that c,(A;) ~
a;nal, ai,...,ax > 1. Let I = I ---Ij and let A satisfy I = Id(A). Then

cn(A) ~ anca”, wherea =3+ -+ ar,e=e1+---+ex+k—1 and

ot .. .azk

a:al"'ak—(a1+-~+ak)e'

We also need the following variant of that theorem:

THEOREM 3.2: Let B; be a nilpotent algebra of class £ + 1: c¢¢(By) # 0,
ceri(B1) = 0, i = 1,2,.... Denote cg(B1) = py. Let By be a PI algebra
such that ¢, (B2) _z_an®a™ (a >0, a« > 1). Let B be a P.L algebra such that

n—oo

1d(B) = 1d(B1) - 1d(B). Then

~ De-a 4+e+1 n
¢n(B) ~ s -a™.

=0
Formanek (see [BR, 1.1] for details) that ¢, (B) = ¢o(B1) +cn(B2) + nwp—1 — wp.
Thus, the proof of 3.1 obviously follows from the following

Proof: Denote w, = Y.~ (';)cj(Bl) - Cp—j(Bz). It follows from a formula of

LEMMA 3.3: Let {p,}, {qn} satisfy
(1) For some £, p; # 0 and ppy; =0,i=1,2,...,
(2) gn,z_anfa™, a>0,a>1

Define w,, = Z};O (?)qun_j and r, = pn + qn + nw,_1 — wy,. Then

o~ Pe-a ttetl  n
T Pattt '
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Proof: We have
)

Wp = Z (?)p]’(}n—j

§=0

-1
n n
= (E)Pz%~e + Z <j>ijn—-j
—o

M

_pee_f a(n =) n—€+z<> a(n—j)*- a7,

1=

Now n — £ ~ n ~ n — j, hence the first summand dominates the sum, so

p a‘ Z-}—e.an
- Pak :

It clearly follows that nw,_; dominates r,, hence

Wp,

Tn & NWp_—1

pf a £+e n—1
~ De-a l+e+1 n
T “n ca. |

We can now prove

THEOREM 3.4: Let q be an arbitrary positive rational number. Then there exists
a (non-unitary) P.I. algebra B such that c,(B) ~ gnP, for a suitable positive

integer p.

Proof: Let q = u/v, u, v be positive integers. Construct a commutative algebra
B; which is nilpotent of class v + 1, e.g. B; has basis ¢,¢2,...,t", and t**! = 0.
Thus ¢;(B1) =1if 1 < j <wand ¢;(B;) =0ifv < j.

Denote k=u-{(v—1))andlet Bp=A=A4, @ ---® A; as in 2.3:

cn(Bg) ~ kn*1L.
Let B be a P.I. algebra with T-ideal of identities
Id(Bs) = 1d(B4) - Id(B,).
Applying 3.1, we obtain (a =k, e=k—1,a=1,f=v, and p, = 1):

k
¢n(B3) ~ Jn”*'k =gqn't*. 1
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