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ABSTRACT 

Let  cn(A) denote  the  codimensions  of a P.I. Mgebra A, and  a s s u m e  cn(A) 

has  a po lynomia l  growth: c n ( A ) ~  qn k. Then ,  necessarily, q E Q [D3]. 

If 1 E A, we show t h a t  

1 1 1 ( -1 )  k 1 
- -  < q _ <  - - - - - - - { -  . . . .  + ~ - ,  
k! - 2! 3! k! e 

where  e = 2.71 . . . .  In the  non-un i t a ry  case, for any  0 < q E Q, we 

cons t ruc t  A, wi th  a sui table  k, such  t h a t  c ,~ (A)=_~  qn k. 

* P a r t i a l l y  s u p p o r t e d  b y  G r a n t  M M 4 0 4 / 9 4  of  M i n i s t r y  of  E d u c a t i o n  a n d  Sc ience ,  

B u l g a r i a  a n d  b y  a B u l g a r i a n - A m e r i c a n  G r a n t  o f  N S F .  

** P a r t i a l l y  s u p p o r t e d  b y  N S F  g r a n t  D M S - 9 1 0 1 4 8 8 .  

R e c e i v e d  M a r c h  15, 1995 a n d  in  r e v i s e d  f o r m  M a y  15, 1995 
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Introduction 
In this paper  we consider (non-unitary) P.I. algebras A over a field F of any char- 

acteristic. It  is known that  the codimensions cn(A)  are exponentially bounded 

[Re], i.e. there exists a constant a such that  c,~(A) _< a n, n = 1 ,2 , . . . .  Our 

purpose is to obtain more detailed information about the growth of e~(A) .  Up 

till now, all the known examples in characteristic 0 show that  either Cn (A) is of 

polynomial growth or there exist constants al ,  a2, gl, t2 and a such that  for all n 

a2nt2a  n < cn(A)  < a l n t l a  '~. 

For a large class of P.I. algebras A, it is now known that  cn(A)  asymptotically 

behaves as 

(0.1) cn(A)  "~ b . n g . a n 

for some b, g and a. In all these cases, 

(0.1.1) a E N, 

1 
(0.1.2) g e ~Z,  

and 

for some r E Q and 0 < s E X [BR]. It  is reasonble to conjecture (0.1) and (0.1.1) 

in general. 

The inverse problem here is that  of constructing A with cn - b • n g • a '~ for 

given b, g and a. When a = 1, this is the case of a polynomial growth of c~ (A). 

A description of such algebras A (in characteristic 0) was given by Kemer [K] in 

the language of the cocharacter sequence of A. Further, it is known that  

c , (A) = an k + O(n k- l )  -- au k 

for a rational number q [D3]. 

The main goal of our paper is to determine the value of q in the case of 

polynomial growth of c~ (A). I t  is very surprising that  the answer depends on 

whether or not the algebra is unitary. If cn(A)  ~- qn k and 1 E A, we show that  

1 <  < 1  1 (-1) k 1 
k ~ -  q -  2 ~ - 3 ~  + . . . .  + ~'. "~-'e 
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where e = 2.71 . . . .  On the other hand, for non-unitary algebras and for any 

positive rational number q we give explicit constructions of algebras such that  

cn (A) is asymptotically equal to qn k for a suitable k. 

1. U n i t a r y  a lgeb ras  

Throughout  this paper F is a field of any characteristic and all algebras are 

F-algebras. We denote by F(X} the free non-unitary associative algebra freely 

generated by a countable set X = {xl, x2, . . .}  and by F + F(X} the free uni- 

tary algebra with the same set of free generators. As usual Vn C_ F(X} is the 

vector space of the muttilinear polynomials in x l , . . . , x ~ .  For a P.I. algebra A 

we denote by Id(A) the T-ideal of the polynomial identities for A. The sequence 

ca(A) = dim(V,~/Vn n Id(A)), n = 1 ,2 , . . . ,  is called the codimension sequence 

of A. Assuming that co(A) = 1, it is convenient to introduce the generating 

function 

c(A,t) = E c'(A)tn 
n>O 

as well as the exponential generating function 

t)= co(A)   
n_>O 

Recall [Sp] that  the polynomial f ( x l , . . . ,  a:,~) EVn is called "proper" if it is a 

linear combination of products of (long) commutators 

[ X a ( 1 ) , . . . ] . . . [ . . . , X a ( n ) ] ,  O" C Sn .  

We denote by F,~ the vector space of the proper polynomials of degree n. For a 

P.I. algebra A we introduce the n-th proper codimension 

%(A) = d i m r ~ / ( r n  n Id(A)), n = 0, 1, 2 , . . . ,  

and the related generating functions 

n 

7(A,t) = E %(A)tn' Zt(A't) = E %(A)~... 
n>O n>O 

Drensky [D1, D2] has discovered the following relations between the ordinary and 

the proper codimensions. 
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PROPOSITION 1.1 ([D1, Corollary 2.5], [D2, p. 322]): For any uni tary  algebra 

A, 

k=0 

c ( A , t ) = t _ - - ~  A,i--2- ~ , 

~(A, t) = e ~ (A ,  t). 

In particular, i f  there exists k such that  7k(A) ¢ 0 and ~'e(A) = 0 for e > k, then 

k 

~----0 

and cn( A ) is a polynomial  o f  degree k in n. 

Note that the proofs in [D1, D2] are in characteristic 0. However, they hold 

without any changes in any characteristic because the result of Specht [Sp] is 

based on the fact that the free associative algebra is the universal enveloping 

algebra of the free Lie algebra and this is true over any field. 

COROLLARY 1.2  ([Sp]): For every n = O, 1, 2 , . . .  

( 11 
dim Fn = n! 1 -  ~ + 2-~- 3-~ + . - . +  

Proof: Let 
t n 

~(t) = E dim Vn ~.T = E t ' .  
n>0 n>0  

t k t k 
~(t) = E d i m  F k ~  = E 7k 

k_>o k_>o 

We apply Proposition 1.1 to the free unitary algebra and obtain 

,~(t) = ~-'~(t) = Z p! Z t ~  = Z ~! n!' 
p_~0 q_~0 n_~0 k=0 

and comparing the coefficients of this series with ~ we complete the proof. | 
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LEMMA 1.3: I[ for a unitary P.I: algebra A there exists k such tha t  ~/xk(A) ---- 0, 

then ~m(A) = 0 for a11 m >_ 2k. 

Proof." Let ~xk(A) = 0, i.e. F~k C Id(A) and let 

u = [X~(1),---]---[- .- ,XG(n)] • Fn, a • S,~, n > 2k. 

If  u is a p roduc t  of commuta to r s  of length 2 then  n is even and 

= ([x~(1), x~(~/] . . .  [x~ixk-1 ~, x~(xk)])[x~(2~+~), x ~ ( ~ + 2 / ] . . .  [x~(~_~), xo(~)] 

belongs to Id(A).  If  u contains a c o m m u t a t o r  of length greater  than  2, e.g. 

it = [Xo-(1) , . . . ] . . .  [Xa(p) , Xa(p.~_l) , Xa(p_~2) , . . . ] . . .  [ . . . ,  Xa(n)], 

then  the subs t i tu t ion  y ~ [xo(p), xo(p+l)] shows tha t  

it = [xo(,), . . . ] . . .  [[x~(,), x~(p+l)], x < , + ~ ) , . . . ] . . .  [.. . ,  Xo(n)] 

is a consequence of a c o m m u t a t o r  from Fn-1 .  By inductive a rguments  we obta in  

t ha t  u • Id(A).  

Remark: I f  E is the  infinite-dimensional G r a s s m a n n  algebra,  then  c~(E) --- 2 n-1 

[KR], and the proof  of 1.4(a) below implies tha t  72k(E) = 1 and 72k+l(E)  = 0 

for all k. 

THEOREM 1.4: Let A be a uni ta ry  P.L algebra. Then either  

(a) ca(A) > 2 n-1 (hence ca(A) is exponential) or 

(b) There  exist an integer k > 0 and a rational number  r such that 

cn(A) = r . n  k + O(nk-1),  

and 
1 ~ r ~ ( 1  / de_f 1 1 k 1 
k q -  - . _ . ~  2! 3! + . . . .  + ( - 1 )  ~ .  

Proo~ (a) I f  ~f2t(A) ~ 0 for all t > O, then  by 1.1, 

n A 

j=0 

>-- 2j 
j>0 

: 2 n-1" 
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(b) Assume "y2e(A) -- 0 for some g. By 1.3, there exists k > 0 such that  

7k (A) ¢ 0 and 7m (A) = 0 for all m > k. Thus c n (A) = ~-~j=ok (j)'Tj(A),n so 

(nk) ( cn(A) (nk)"/k(A) q- O(nk-1) -- "Tk(A)k! nk b O(nk-1)" 

The proof follows from 1.2 since ~/k(A) is an integer, and 1 _< Tk(A) < dimFk. 

2. Non-unitary algebras with polynomial g r o w t h  of  t h e  c o d i m e n s i o n s  

The purpose of this section is to construct, for any 0 < k E Z, an algebra A such 

that  c,~(A) ~_ kn k- t .  Given any 0 < q E Q, this allows us to construct (Theorem 

3.4 below) an algebra A such that cn(A) "~ qn p, for a suitable p. 

Fix a positive integer k. Let Mk (F) be the k × k matrix algebra with entries 

from F and let {epq I P, q = 1, 2 , . . . ,  k} be the ordinary basis of matrix units for 

Mk(F),  i.e. the only non-zero entry of epq is 1 in the intersection of the p-th row 

and the q-th column. Let i be an integer, 1 < i < k, and let 

A~ = Fe~i + ~ FCpq 
p•q 

be the subalgebra of Mk (F) consisting of all upper triangular matrices with all 

the entries on the diagonal equal to 0 except the (i, /)-entry. 

LEMMA 2.1: The algebra Ai satisfies the polynomial identity 

fi(Xl, "'',xk--kl) = Xl . ..Xi--l[Xi,Xi+x]Xi+2 .. .Xk+l = O. 

Proof" Represent a matrix in Ai by (eli,epq [p  < q) (i.e., a matrix in A~ is a 

linear combination of these matrix units). Trivially, [Ai, A~] consists of strictly 

upper triangular matrices, and these are represented by (epq [p < q) (or (%q) in 

short). We need to prove that 

(,) 
Y y 

i--1 k--i 

We prove first 

CLAIM: If eTs has a nonzero coefficient in the product 

epq)...  pq)(epq), 
Y 

i--1 
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t h e n i + l < s .  

Indeed, e~s can be wri t ten as e~s = e~l~ 1 - - . e ~ ,  with ri < si, and for each 

1 _< j _< i - 1, e~j~j either equals ei~ or rj  < sj. 

CASE 1: For all l <_ j _< i - 1 ,  e~jsj C e ~ .  I t  then follows tha t  r l + l < _  sl ,  

r l  + 2 <__ s 2 , . . . , r l  + i  _< si, so i +  1 _< si because 1 < rl .  

CASE 2: The  matr ix  unit  eii appears in tha t  product ,  so e~,s = e'e~e"e,,s,. 
Thus e" = eir~ with i < ri < s~ = s, so, again, i + 1 _< s. 

We can now prove ( ,) :  Assume e~. appears  in ( ,)  with a nonzero coefficient, 

then e~. = e~,~e~+l~+~ .--e~ks ~, and by the above, i + 1 _< s. I t  follows tha t  

er j~ ~ e~ (and hence rj < sj) for all j such tha t  i + 1 _< j < k. Thus  k + 1 = 

i +  1 + k -  i _< s + k -  i _< sk = v, a contradiction. | 

Remark: G i v e n n ,  k a n d i ,  l < i K k < n ,  let 

L(i ,n,k)  = {0 E Sn l a(i) < a ( i +  1) < . . .  < a ( n -  k + i ) } .  

Then  

r I  ( n ) " ( k - 1 ) !  = nk-l  + O(nk-2)" In(i'n'k)l = J =  k - 1  
j=n-k+2 

Indeed, a E L(i, n, k) is completely determined by first choosing k - 1 values 

f rom { 1 , . . . ,  n}, then ordering them as 

o ( 1 ) , . . . , a ( i -  1 ) , a ( n -  k + i +  1 ) , . . . , a ( n ) .  

Now let i <_ i < j _< k <_ n, then L(i ,n,k)  ;] L( j ,n ,k)  = L(i,n,-k), where 

= k - j + i _< k - 1, hence In(i, n, k) N L(j, n, k)l  ~_ n ~-1  = O ( n k - 2 ) .  By "the 

principle of inclusion-exclusion" of Combinatorics,  

k k 

U L(i 'n 'k)  > - E  IL( i 'n ' k ) l -  E IL(i'n'k) NL( j 'n 'k ) l  
i=i i=i i<_iCj<_k 

~_ kn k-1 + O(n  k-2) 

_ _  ~ ~?~k-- 1 

Let 1 < i < k < n a n d  l < g < n .  Denote 

L(i,n,k,g) = {c~ E L(i ,n,k) l a ( n -  k + i + l) < n -  g}, 
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L'( i ,n ,k ,g)  = L ( i , n , k ) \L ( i , n , k , e )  if l < i < k - l ,  and L(k ,n ,k ,g)  = L(k ,n ,k ) .  

Also, let 
k 

L(n, k) = U L(i, n, k, 2k - 3). 
i=1 

Then 

LEMMA 2.2: 

~ k n k - 1  (In fact, [L(n, k )t = kn ~-1 + O(nk-2).) 

k Proo~ Clearly, L1 D_ L(n, k) D_ LI\L2, where L1 = (.Ji=l L( i ,n ,k )  and L2 = 
k ~Ji=l L ' ( i ,n ,k ,  2 k -  3). By the above, ILll ~_ kn k- l ,  hence it suffices to show 

that  for each 1 < i < k and any g, IL'(i,n,k,~)l = O(nk-2). This follows since 

L' (k ,n ,k ,e )  = 0, and for 1 < i < k -  1, 

[L'(i,n,k,g)] = (g + 1 ) l L ( i , n -  1, k -  1)[ 

~_ (e+  1 ) ( n -  1) k-2 

= O(nk-2). 

LEMMA 2.3: Let A = A1 • -. .  • Ak, Ai, i = 1 , . . . ,  k, as above. Then 

(a) The monomials { M o ( x l , . . . ,  xn) l a • L(i, n, k)} are linearly independent 

modulo Id(A~), i = 1 , . . . ,  k. 

(b) The monomials {Ma(x l , . . . , x~ )  I a • L(n, k)} are linearly independent 

modulo Id(A). (Here cr • Sn and Ma(Xl , . . . ,  Xn) ---- Xa(1)"" "Xa(n).) 

Note: From 2.3 (a) and [OR] it follows that all the identities of A~ are 

consequences of Xl . . .  xi[x~, xi+l]x~+2.., xk+l. 

Proo~ We prove (b). The proof of (a) is similar - -  but easier - -  and is contained 

in "Case 1" below. 

Assume that  g ( x t , . . . ,  x~) = ~-~oEL(n,k) co" M ~ ( x l , . . . ,  xn) • Id(A). We de- 

note L* (n, k) -- {(r • L(n, k) I ao ~ 0} and proceed to show that  L* (n, k) --- 0. 

Assume that  L*(n,k) 7 ~ •. Denote a t -- ( a l t , . . . , ak t )  • A I @ . ' - ® A k ,  1 < t < 

n. Since g(_al,... ,an) -- ( g (a l l , . . . ,  a l n ) , . . . ,  g (ak l , . . . ,  ak,)), it suffices to show 

that  there exist 1 _< j _< k and x l , . . . , x ~  • Aj such that g (x l , - . .  ,x~) ¢ 0. So 

assume g(z l , - - .  ,x~) ---- 0 for any x l , . . - , x ~  • Aj, 1 <_ j <_ k. 

Let j = min{i [ L * ( n , k ) ~ L ( i , n , k )  ¢ 0} and let ~- • L( j ,n , k )  and a~ ~ 0. 

Substitute 

( ~ 0 ) , ' " ,  ~-(J-~), ~ ( J ) , ' " ,  ~(n-k+j ) ,  ~ ( ~ - k + j + ~ ) , - . . ,  ~(~))  
= ( e l , 2 ,  . . . ,  e j - l , j ,  e j , j  . . . .  , e j , j ,  e j , j + l ,  - - - ,  e k - - l , k ) -  
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Notice t ha t  ~ 1 , . . .  ,gn  • Aj. Clearly, 

0 = g(~) = a~elk + E ao. Mo(~I , . . . , 5~ ) .  
T~£aE L * (n,k ) 

If  aoMo(~) = 0 for all T ¢ a • L*(n,k),  then  a~elk = 0, so a~ = 0, a contra-  

diction. Assume aoMo(5) ¢ 0 for some 7- ¢ a • L*(n, k). Then  Mo(~)  @ 0, 

and it follows tha t  a ( s )  = ~-(s) for s = 1 , . . . , j  - 1 , n -  k + j  + 1 , . . . , n .  Since 

a • Uki=l n(i,  n, k), there  exists a minimal  i (1 < i < k) such t ha t  a • L(i, n, k). 

By the min imal i ty  of j ,  j _< i. 

CASE 1: i = j .  Then  a ( j )  < . . .  < a(n - k + j) ,  and since these numbers  

are a p e r m u t a t i o n  of T(j) < . . .  < T(n - k + j ) ,  hence a(s) = T(S) also for 

s = j , . . . ,  n -- k + j .  Thus  a = T, a contradiction.  

CASE 2: j + 1 < i. Hence 

a ( n -  k + j)  < a ( n -  k + j + 1), 

s o q ( i ) < - . - < a ( n - k + j + l ) = T ( n - k + j + l ) .  Thus,  7 ( n - k + j + l )  i s a n  

upper  bound  for an increasing sequence of length n - k + j - i + 2 2 n - 2k + 3. 

Hence 

T ( n - k + j + l )  > n - 2 k + 3 ,  

so ~- • L*(n, k), again a contradiction.  | 

We can now prove 

THEOREM 2.4: Let A = A1 ® . . .  ® Ak as above, and let k <_ n. Then 

(a) c,~(Ai) = I L ( i , n , k ) ]  = n k - 1  + O ( n  k-2) ~-- n k- l ,  and 

(b) cn(A) ~- kn k-1. (In fact, cn(A) = kn k-1 + O(nk-2).) 

Proof: (a) By 2.3(a), cn(di) >>_ In(i ,n,k)l .  By 2.1 and by [OR, Th.  3.1] (or by  

an easy direct a rgument ) ,  c,~(di) < n(n - 1 ) . . .  (n - k + 2) = In(i,n, k)]. 

(b) By 2.2 and 2.3, 

c~(d) >_ IL(n, k)l ~_ kn k-1. 

The  opposi te  inequali ty follows easily: Id(A) = I d ( ( ~  A~) = A Id(Ai) ,  hence 

Yn V n V n 
V~ n Id(A)  - N(V,~ n Id(Ai))  imbeds natura l ly  into ( ~  V~ N Id(Ai)"  
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Thus, by (a), 
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k 
c~(A) < ~-~ c~(Ai) = kn k-1 + O(nk-2) .  

i = l  

Isr. J. Math. 

3. Applications 

The main tool for applications here is Theorem 1.4 in [BR], which is a consequence 

of a theorem of Formanek, and which we now reproduce. 

T H E O R E M  3.1 ([BR, 1.4]): Let cn(A) denote the codimensions o f a  P.I. algebra 

A. For j = 1 , . . . ,  k, let Ij  be T ideals, Ij  = Id(Aj) c_ F(X>,  such that  cn(Aj)  ~- 
• e j  n . - -  , .  % n  a j ,  a l , . .  , ak  > 1. Let  I = I1 .Ik a n d l e t A  satisfy I = Id(A). Then 

c~(A) "~ anna ~, where a = a l  + . . .  + ak, e = el + . . .  + ek + k -  1 and 

ek 
c ~ e l  . . . 0~ k 

a = a l " - a k ( a l  + " "  + ak) ~" 

We also need the following variant of that  theorem: 

THEOREM 3.2: Let B1 be a nilpotent  algebra of c/ass g + 1: ce(B1) # O, 

ce+i(B1) = 0, i = 1 , 2 , . . . .  Denote ce(B1) = pg. Let  B2 be a P.L algebra 

such that  cn(B2) ~oo  anCan (a > O, a >_ 1). Let  B be a P.I. algebra such that  

Id(B) = Id(B1) .  Id(B2). Then 

p g  . a . n g + e + l  . o l n .  

n Proo~ Denote wn = Y~j=o (~.)cj(B1). c~_j(B2).  It  follows from a formula of 

Formanek (see [BR, 1.1] for details) that  cn (B) -- c~ (B1)+ c~ (B2)+ n w n - 1 -  w~. 

Thus, the proof of 3.1 obviously follows from the following 

LEMMA 3.3: Let  {Pn}, {qn} satisfy 

(1) For some e, pe # 0 and Pt+i = O, i = 1, 2 , . . . ,  

(2) qn~-~oo an~an, a > O, a >_ 1. 

Define Wn = ~-~j=o pjq~_j and r~ = Pn + q~ + nwn-1  - w~. Then 

Pe • a . n ~ + e + l  . otn. 
r r~  ~ ~-~+-1 
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We have 

Wn = P jqn- i  

n n 

j=o 

n~ ~-1 ['n~ n j . • ~_pt~.  . a ( n - - e )  e . a  n-~ + ~.= ~ j ) p j - ~ . a ( n - - j ) e . a n - J .  

Now n - g --- n ~- n - j ,  hence  the  first s u m m a n d  d o m i n a t e s  the  sum,  so 

pt  • a . n t+e  . ctn. wn - l ! a k  

I t  c lear ly  follows t h a t  nwn-1  d o m i n a t e s  rn ,  hence  

rn ~--- nWn-1 

Pe • a ,  1)~+e~n_ 1 
~- n .  O-V~-ae ~ n -  

_ ~ P t  • a . n~ +e + l  . o n .  | 
~!at+ 1 

We c a n  now prove  

THEOREM 3.4: Let  q be an arbitrary posi t ive rational number.  Then the re  exists  

a (non-unitary)  P.I. algebra B such that  c n ( B )  -~ qn p, t'or a suitable posi t ive  

integer p. 

Proof'. Let  q = u / v ,  u, v be  pos i t ive  integers .  C o n s t r u c t  a c o m m u t a t i v e  a lgeb ra  

B1 which  is n i l p o t e n t  of class v + 1, e.g. B1 has  basis  t, t 2 , . . . ,  t ' ,  a n d  t "+1 = 0. 

T h u s  c j (B1)  = 1 if 1 <_ j _< v a n d  cj (B1)  = 0 i f v  < j .  

D e n o t e  k = u -  ((v - 1)!) a n d  let  B2 = A = A1 ® . . -  ® Ak as in  2.3: 

c~(B2) -~ kn  k-1. 

Let  B be  a P.I.  a lgeb ra  w i t h  T - idea l  of iden t i t i es  

Id (Ba )  = I d ( B 1 ) .  Id (B2) .  

A p p l y i n g  3.1, we o b t a i n  (a = k, e = k - 1, a = 1, ~ = v, a n d  Pt = 1): 

k n v +  k = qn v+k. c~(B3) ~- v! | 
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